Authenticity ahead of interdisciplinarity – a scoping review of student experiences in interdisciplinary science projects




Employability, project-based learning, interdisciplinary competence, curriculum design


Interdisciplinary projects are reported to facilitate the development of both disciplinary and generic skills. They vary in their design and implementation, but the effectiveness of different project models has not been studied. The aim of this study was to determine student satisfaction, engagement with learning and development of employability skills across interdisciplinary projects with different delivery models.

This scoping review appraises interdisciplinary projects implemented in science-based undergraduate degree programs. Projects with varying models of delivery, interdisciplinarity, authenticity and external partner involvement were examined, and the reported student learning and satisfaction ratings compared. Descriptive statistics and cross tabulation using Fisher’s Exact test were used to analyse the data.

The interdisciplinary project model had little effect on engagement with learning, but student satisfaction improved if the project task was rated as authentic (p<0.05). Improved learning was reported in about half of the projects reviewed. Improved employability was reported in projects where students used discipline-based skills to provide a consultancy (p<0.05), and those where an external partner was involved (p<0.05).

The interdisciplinary project model did not affect disciplinary or employability skill development, apart from interdisciplinary competence, which was significantly improved in a truly interdisciplinary project (p<0.01). Interpersonal skill development was significantly improved where projects had integrated rather than sequential tasks (p<0.05).

Overall, interdisciplinary projects that were authentic and/or involved an external partner generated better student satisfaction and real-world experience. These results inform the future design of interdisciplinary project-based learning tasks and encourage involvement of external partners in project design and delivery.


Metrics Loading ...

Author Biographies

Dr Joanne Hart, University of Sydney

Dr Joanne Hart is an experienced researcher with extensive teaching experience in biomedical science and research methods. Dr Hart is a Senior Fellow of the Higher Education Academy and is particularly interested in interdisciplinary and project-based learning as well as developing Faculty capacity for delivering student research projects. She has extensive curriculum development experience at the unit of study, Degree Program and University level.


Dr Elisa Bone, Melbourne Centre for the Study of Higher Education, The University of Melbourne, Australia

Dr Elisa Bone has a research background in ecology and extensive teaching experience in the biological sciences. She has led and implemented Faculty-level curriculum reviews and advises academics across STEM disciplines in curriculum innovation and design projects. Dr Bone has research interests in interdisciplinary and authentic teaching and learning in the sciences, including the use of collaborative digital tools, and in the effects of disruption on academics’ approaches to teaching and learning.



Acar, O. A., & Tuncdogan, A. (2019). Using the inquiry-based learning approach to enhance student innovativeness: a conceptual model. Teaching in Higher Education, 24(7), 895-909.

Adair, D., & Jaeger, M. (2014). Managing the interdisciplinary approach to engineering design. International Journal of Mechanical Engineering Education, 42(2), 175-184.

Aditomo, A., Goodyear, P., Bliuc, A.-M., & Ellis, R. A. (2013). Inquiry-based learning in higher education: principal forms, educational objectives, and disciplinary variations. Studies in Higher Education, 38(9), 1239-1258.

Alvarez-Bell, R. M., Wirtz, D., & Bian, H. (2017). Identifying keys to success in innovative teaching: Student engagement and instructional practices as predictors of student learning in a course using a team-based learning approach. Teaching and learning inquiry, 5(2), 128-146.

Amador, J., & Miles, L. (2016). Live From Boone Lake: Interdisciplinary Problem-Based Learning Meets Public Science Writing. Journal of College Science Teaching, 45(6), 36-42.

Anderson, N., Zhang, M., & McMaster, K. (2011). Integrating Health Information Systems into a Database Course: A Case Study. Information Systems Education Journal, 9(6), 38-43.

Australian Government. (2021). 2021 Graduate Outcomes Survey.

Bacon, C. M., Mulvaney, D., Ball, T. B., DuPuis, E. M., Gliessman, S. R., Lipschutz, R. D., & Shakouri, A. (2011). The Creation of an Integrated Sustainability Curriculum and Student Praxis Projects. International Journal of Sustainability in Higher Education, 12(2), 193-208.

Beier, M. E., Kim, M. H., Saterbak, A., Leautaud, V., Bishnoi, S., & Gilberto, J. M. (2019). The effect of authentic project‐based learning on attitudes and career aspirations in STEM. Journal of Research in Science Teaching, 56(1), 3-23.

Ben Youssef, B., & Berry, B. (2012). Learning to Think Spatially in an Undergraduate Interdisciplinary Computational Design Context: A Case Study. International Journal of Technology and Design Education, 22(4), 541-564.

Bennie, B., Eager, E. A., Peirce, J. P., & Sandland, G. J. (2018). Using a Summer REU to Help Develop the Next Generation of Mathematical Ecologists. Bulletin of Mathematical Biology, 80(4), 926-944.

Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivating Project-Based Learning: Sustaining the Doing, Supporting the Learning. Educational psychologist, 26(3-4), 369-398.

Bramhall, M. D., & Short, C. (2014, 06/01/). Education for Professional Engineering Practice. Industry and Higher Education, 28(3), 193-199.

Cheng, W., Wu, X., Zhang, Z., Liu, F., Zhang, M., & Guo, P. (2013). Effective project-oriented approach for training professional mechanical engineers in undergraduate education. International Journal of Mechanical Engineering Education, 41(4), 289-296.

Clark, S., Byker, C., Niewotny, K., & Helms, J. (2013). Framing an Undergraduate Minor through the Civic Agriculture and Food Systems Curriculum. NACTA Journal, 57(2), 56-67.

Clemes, M. D., Gan, C. E. C., & Kao, T.-H. (2008). University Student Satisfaction: An Empirical Analysis. Journal of Marketing for Higher Education, 17(2), 292-325.

Cline, K., Fasteen, J., Francis, A., Sullivan, E., & Wendt, T. (2020). A Vision for Projects across the Mathematics Curriculum. PRIMUS, 30(4), 379-399.

Corno, F., & De Russis, L. (2017). Training Engineers for the Ambient Intelligence Challenge. IEEE Transactions on Education, 60(1), 40-49.

Cross, I. D., & Congreve, A. (2021). Teaching (super) wicked problems: authentic learning about climate change. Journal of Geography in Higher Education, 45(4), 491-516.

Dexter, C. A. (2021). Service learning in an undergraduate adulthood and aging course: using life stories to connect students, content, and community. Educational Gerontology, 47(4), 172-179.

Diamond, S., Middleton, A., & Mather, R. (2011). A cross-faculty simulation model for authentic learning. Innovations in Education and Teaching International, 48(1), 25-35.

Dunbar, D., Terlecki, M., Watterson, N., & Ratmansky, L. (2013). An Honors Interdisciplinary Community-Based Research Course. Honors in Practice, 9, 129-140.

Duncan, S. I., Bishop, P., & Lenhart, S. (2010). Preparing the "New" Biologist of the Future: Student Research at the Interface of Mathematics and Biology. CBE - Life Sciences Education, 9(3), 311-315.

Everingham, Y., Gyuris, E., & Sexton, J. (2013). Using student feedback to improve student attitudes and mathematical confidence in a first year interdisciplinary quantitative course: from the ashes of disaster. International journal of mathematical education in science and technology, 44(6), 877-892.

Godemann, J. (2008). Knowledge integration: a key challenge for transdisciplinary cooperation. Environmental Education Research, 14(6), 625-641.

Gruenther, K., Bailey, R., Wilson, J., Plucker, C., & Hashmi, H. (2009). The influence of prior industry experience and multidisciplinary teamwork on student design learning in a capstone design course. Design Studies, 30(6), 721-736.

Guo, P., Saab, N., Post, L. S., & Admiraal, W. (2020). A review of project-based learning in higher education: Student outcomes and measures. International Journal of Educational Research, 102, 101586.

Hart, J. (2019). Interdisciplinary Project-Based Learning as a Means of Developing Employability Skills in Undergraduate Science Degree Programs. Journal of Teaching and Learning for Graduate Employability, 10(2), 50-66.

Hayes, M., & Cejnar, L. (2020). Evaluating Alternative Work-Integrated Learning Opportunities: Student Perceptions of Interdisciplinary Industry-Based Projects. Journal of University Teaching and Learning Practice, 17(4).

Heikkinen, J., & Isomottonen, V. (2015). Learning Mechanisms in Multidisciplinary Teamwork with Real Customers and Open-Ended Problems. European Journal of Engineering Education, 40(6), 653-670.

Helle, L., Tynjälä, P., & Olkinuora, E. (2006). Project-based learning in post-secondary education: Theory, practice and rubber sling shots. Higher education, 51(2), 287-314.

Hun Bok, J., Zamora, F., & Duzgoren-Aydin, N. S. (2017). Water Quality Monitoring of an Urban Estuary and a Coastal Aquifer Using Field Kits and Meters: A Community-Based Environmental Research Project. Journal of Chemical Education, 94(10), 1512-1516.

Jantsch, E. (1970). Inter- and Transdisciplinary University: A systems approach to education and innovation. Policy sciences, 1(1), 403-428.

Kłeczek, R., Hajdas, M., & Wrona, S. (2020). Wicked problems and project-based learning: Value-in-use approach. The International Journal of Management Education, 18(1), 100324.

Kricsfalusy, V., George, C., & Reed, M. G. (2018). Integrating problem- and project-based learning opportunities: assessing outcomes of a field course in environment and sustainability. Environmental Education Research, 24(4), 593-610.

Long, A. F., & Godfrey, M. (2004). An evaluation tool to assess the quality of qualitative research studies. International Journal of Social Research Methodology, 7(2), 181-196.

Marcketti, S. B., & Karpova, E. (2014). Getting Ready for the Real World: Student Perspectives on Bringing Industry Collaboration into the Classroom. Journal of Family and Consumer Sciences, 106(1), 27-31.

Mason, S. G. (2008). Client-oriented Projects: GIS Course Design with the Potential to Serve Multiple Constituents. Journal of Public Affairs Education, 14(2), 241-252.

McGunagle, D., & Zizka, L. (2020). Employability skills for 21st-century STEM students: the employers' perspective. Higher Education, Skills and Work-Based Learning, 10(3), 591-606.

NHMRC. (2018). National Statement on Ethical Conduct in Human Research (2007) - updated 2018.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71.

Palmer, S., Campbell, M., Johnson, E., & West, J. (2018). Occupational Outcomes for Bachelor of Science Graduates in Australia and Implications for Undergraduate Science Curricula. Research in Science Education, 48(5), 989-1006.

Pellegrini, J. J., & Jansen, E. (2013) The Mayo Innovation Scholars Program: Undergraduates Explore the Science and Economics of Medical Innovations. Journal of College Science Teaching, 42(4), 28-32.

Quality Indicators for Learning and Teaching. (2021). 2021 Graduate Outcomes Survey – Longitudinal.

Rees Lewis, D. G., Gerber, E. M., Carlson, S. E., & Easterday, M. W. (2019). Opportunities for educational innovations in authentic project-based learning: understanding instructor perceived challenges to design for adoption. Educational technology research and development, 67(4), 953-982.

Sanft, R., & Ziegler-Graham, K. (2018). Mathematics Practicum at St. Olaf College: Project-Based Learning through Academic Civic Engagement. PRIMUS, 28(4), 335-349.

Sangster, S. L., Loy, K. L., Mills, S. D., & Lawson, K. L. (2016). Engaging First-year University Students in Research: Promise, Potentials, and Pitfalls. The Canadian Journal for the Scholarship of Teaching and Learning, 7(1), 1-33.

Shaffer, D., & Resnick, M. (1999). “Thick” authenticity: New media and authentic learning. Journal of interactive learning research, 10(2), 195-215.

Shanahan, D. E., Palmer, L. H., & Salas, J. (2019). Achieving Scaled and Sustained Use of Client-Based Projects in Business School Marketing Education: A Proposed Suprastructure. Journal of Marketing Education, 43(1), 59-74.

Spronken‐Smith, R., & Walker, R. (2010). Can inquiry‐based learning strengthen the links between teaching and disciplinary research? Studies in Higher Education, 35(6), 723-740.

Talafian H, G. T., Hammrich PL, Lamberson L. (2019). Experiential Learning in a Summer Program: Engaging Undergraduate Students in STEM Research Experience. Summer Academe: A journal of Higher Education.

Vicente, A. J., Tan, T. A., & Yu, A. R. (2018). Collaborative Approach in Software Engineering Education: An Interdisciplinary Case. Journal of Information Technology Education: Innovations in Practice, 17, 127-152.

Villarroel, V., Bloxham, S., Bruna, D., Bruna, C., & Herrera-Seda, C. (2018). Authentic assessment: creating a blueprint for course design. Assessment & Evaluation in Higher Education, 43(5), 840-854.

Warr, M., & West, R. E. (2020). Bridging Academic Disciplines with Interdisciplinary Project-Based Learning: Challenges and Opportunities. Interdisciplinary Journal of Problem-based Learning, 14(1).

Warr Pedersen, K., Pharo, E., Peterson, C., & Clark, G. A. (2017). Wheels of change in higher education. International Journal of Sustainability in Higher Education, 18(2), 171-184.

Zafra-Gómez, J. L., Román-Martínez, I., & Gómez-Miranda, M. E. (2015). Measuring the impact of inquiry-based learning on outcomes and student satisfaction. Assessment & Evaluation in Higher Education, 40(8), 1050-1069.

Zanko, M., Papadopoulos, T., Taylor, T., Fallshaw, E., & Lawson, R. (2011). Professional learning in the business curriculum: engaging industry, academics and students. Asian Social Science, 7(4), 61-68.




How to Cite

Hart, J. L., & Bone, E. (2022). Authenticity ahead of interdisciplinarity – a scoping review of student experiences in interdisciplinary science projects. Journal of Teaching and Learning for Graduate Employability, 13(1), 109–126.